Up to journal
for Research & Developement
Journal of Materials Science: Materials in Electronics
Impact Factor
0/000
Available
2000 - 2020
Volumes
15
Issues
54
Articles
875
Open Access
532


Iranian Water Researches Journal
Analysis of Hydrology Cycle in the Urmia Lake Basin with the WetSpass-M Model


 submission: 08/10/2019 | acception: 08/12/2019 | publication: 14/09/2020

DOI 

Authors
Fatemeh Bashirian1, Dariush Rahimi2*, Saeed Movahedi3, Reza Zakerinejad4

1-University of Isfahan،bashiryan.f@gmail.com

2-University of Isfahan،d.rahimi@geo.ui.ac.ir

3-University of Isfahan،S.movahdi@geo.ui.ac.ir

4-University of Isfahan،R.zakerinejad@geo.ui.ac.ir



79 Downloads

Abstract

Lake Urmia is the largest interior lake in Iran. This lake, as an effective ecosystem unit in northwest of Iran, highly contribute in the ecology of the region. The water level of Lake Urmia has dropped between 6 and 7.40 meters that has reduced the area of water zone. This reduction has leaded to increase in salty marsh, since1995. By May 2017, the water level was 3.11 m lower than the ecological balance. Expansion of salt marshes is due to successive droughts and an increase in water harvesting from the surface and ground water sources. This phenomenon can promote dust and salt storm occurrence, and lead to the death of the lake ecosystem, compulsory migration and population health threats of more than 10 million people. In order to optimal long-term planning and management of the available water resources, a better understanding of the temporal and spatial variations of water balance components (especially actual evapotranspiration, surface runoff, and groundwater recharge) is essential. A review of various research findings around the world shows that the WetSpass-M model is a suitable model for the spatial simulation of surface runoff, actual evapotranspiration and groundwater recharge in basins. The main aim of this paper was to analyze spatial distribution of annual components of hydrology cycle in the basin of Lake Urmia, using WetSpass-M model during 25 years (1992-2017). The method adopted in this study was analytic. Climatic, hydrological and land use data were applied in this analysis. Climatic and hydrological data were provided from meteorological stations, hydrometric station information and observed wells respectively. In this study, the satellite images and field studies were applied to determine land use. These images were downloaded from the site of EarthExplorer. The original Wet Spass-M model is a quasi-steady state spatially distributed water balance model scripted in Avenue and used to predict hydrological processes at seasonal and annual time steps. Since the model is a distributed one, the water balance computation is performed at a raster-cell level. Individual raster water balance in this model was obtained by summing up independent water balances for the vegetated, bare soil, open- water, and impervious fraction of each raster cell. The total water balance of the given area was thus calculated as the summation of the water balance of each raster cell. Precipitation was taken as the starting point for the computation of the water balance by each of the above mentioned components of a raster cell. The rest of the processes (interception, runoff, evapotranspiration and recharge) follow in an orderly manner. To validate the results of Wet Spass-M model, the coefficients of Nash-Sutcliffe Efficiency and RMSE-Observations Standard Deviation Ratio were used. The basin of Lake Urmia has been affected by many climate and human changes that have caused Lake Urmia Crisis. During the study period, runoff declined but temperature and evaporation increased. Land use has also changed widely. These changes included dry farming and rangelands convert to settlement and increase in area of irrigated farming. About 3043 km2 of lake area has been reduced and added to salt marsh. The average depth of ground water has decreased by 7.4 meters. The analysis of simulation results indicated that Wets pass-M model works properly to simulate hydrological water budget components in the Urmia Lake Basin. According to the results, in 1992, the highest runoff occurred in the western part of the basin with the highest rainfall, and all groundwater in the southern and western parts of the basin was well recharge. In the year 2017 most of the runoff and groundwater recharge was confined to the southwestern part of the basin. In 2017, Lake Urmia experienced higher evapotranspiration than the year 1992. In 1992, 58.42% of the basin precipitation was spent on evapotranspiration, 7.20% for surface runoff, 31.18% for groundwater recharge and 3.2% for interception. In the year 2017, these changed to 55.49, 1.55, 39.77 and 3.19%, respectively. Among the simulated components during the study period, the runoff has the highest coefficient of variation and the lowest groundwater recharge. Also during the 25-year statistical period, eastern parts of Urmia Lake (including: Ajab Shir, Azarshahr, Maragheh and Shiramin) had the highest coefficient of variation in all studied components. The southwestern parts of the basin were in better condition.




Keywords

Urmia Lake Basin  Remote Sensing  Water Balance  WetSpass M Model 



Download fulltext PDF


Open Access

Download

Citation
بشیریان ف. رحیمی د. موحدی س. و ذاکری‌نژاد ر. 1399. شبیه‌سازی رواناب، تبخیر، برگاب و تغذیة آب زیرزمینی دریاچة ارومیه در دوره‌های مرطوب و خشک. مجله پژوهش آب ایران. 38: 85-95




References

Abdollahi K. Bashir I. and Batelaan O. 2012. WetSpass Graphical User Interface. Version 31-05-2012. Cartography of Higher Swiss Education

Abdollahi K. Bashir I. Verbeiren B. Harouna M. R. Griensven A. V. Huysmans M. and Batelaan O. 2017. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Sciences.76: 1-18

Alemayehu T. Kebede T. and Liu L. 2017. Basin characterization and determination of hydraulic connectivity of mega basins using integrated methods: (The case of Baro-Akobo and mega watershed beyond). Journal of African Earth Sciences. 137: 32-45

Alizadeh-Choobari O. Ahmadi-Givi F. Mirzaeia N. and Owladb E. 2016. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. International Journal of Climatology. 36: 4276-4286

Armanuos A. M. Negm A. Yoshimura C. and Saavedra Valeriano O. C. 2016. Erratum to: Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arabian Journal of Geosciences. 9: 1-14

Batelaan O. and De Smedt F. 2007. GIS-based recharge estimation by coupling surface–subsurface water balances. Journal of Hydrology. 337: 337-355

Da Silva M. G. De Oliveira de Aguiar Netto A. De Jesus Neves R. J. Do Vasco A. N. Almeida C. and Faccioli G. G. 2015. Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. Journal of Environmental Protection. 6: 837-850

Eimanifar A. and Mohebbi F. 2007. Urmia Lake (Northwest Iran): a brief review. Saline Systems. 3: 1-8

Gebreyohannes T. De Smedt F. Walraevens K. Gebresilassie S. Hussien A. Hagos M. Amare K. Deckers J. and Gebrehiwot K. 2013. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin – Tigray – Ethiopia. Journal of Hydrology. 499: 110-123

Ghaheri M. Baghal-Vayjooee M. H. and Naziri J. 1999. Lake Urmia, Iran: A summary review, International Journal of Salt Lake Research. 8: 19-22

Mahmon N. A. Ya’acob N.Yusof A. L. and Jaafar J. 2015. Classification methods for remotely sensed data: land use and land cover classification using various combinations of bands. Jurnal teknology. 74: 89-96

Melki A. Abdollahi K. Fatahi R. and Abida H. 2017. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed- Tunisia. Journal of African Earth Sciences. 132: 37-46

Mohebzadeha H. and Fallah M. 2019. Quantitative analysis of water balance components in Lake Urmia, Iran using remote sensing technology. Remote Sensing Applications: Society and Environment. 13: 389-400

Mollaa D. D. Tegayea T. A. and Fletcherc C. G. 2019. Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model. Journal of Hydrology: Regional Studies. 24: 1-17

Moriasi D. N. Arnold J. G. Van Liew M. W. Bingner R. L. Harmel R. D. and Veith T. L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers. 50: 885-900

Park C. Seo J. Lee J. H. K. and Koo M. 2014. A distributed water balance approach to groundwater recharge estimation for Jeju volcanic island, Korea. Geosciences Journal. 18: 193-207

Poelmansa L. Rompaeya A. V. and Batelaana O. 2010. Coupling urban expansion models and hydrological models: How important are spatial patterns?. Land Use Policy. 27: 965-975

Salem A. Dezs˝o. J. and El-Rawy. M. 2019. Assessment of Groundwater Recharge, Evaporation and Runoff in the Drava Basin in Hungary with the WetSpass Model. Hydrology. 23: 1-11

Shresthaa S. Viet Bachb T. and Prasad Pandeya V. 2016. Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science & Policy. 61: 1-13

The United States Geological Survey (USGS). https://earthexplorer.usgs.gov

Wang Y. Lei X. Liao W. Jiang Y. Huang X. Liu J. Song X. Wang H. 2012. Monthly spatial distributed water resources assessment: a case study. Computers & Geosciences. 45: 319-330

Wang Y. Liao W. Ding Y. Wang X. Jiang Y. Song X. and Lei X. 2015. Water resource spatiotemporal pattern evaluation of the upstreamYangtze River corresponding to climate changes. Quaternary International. 380: 187-196

Yun P. Huili G. Demin Z. Xiaojuan L. and Nobukazu N. 2011. Impact of Land Use Change on Groundwater Recharge in Guishui River Basin, China. Chin Geogra.  21: 734-743

Zarei M. Ghazavi R. Vli A. and Abdollahi KH. 2016. Estimating Groundwater Recharge, Evapotranspiration and Surface Runoff using Land-use data: A Case Study in Northeast Iran. Biological Forum-An International Journal. 8: 196-202

Zeeshan Ali M. Qazi W. and Aslam N. 2018. A comparative study of ALOS-2 PALSAR and Landsat-8 imagery for land cover classification using maximum likelihood classifier. The Egyptian journal of Remote Sensing and space sciences. 21: 29-35

Zhang Y. Liu S. Cheng F. and Shen  Z. 2018. WetSpass-Based Study of the Effects of Urbanization on the Water Balance Components at Regional and Quadrat Scales in Beijing, China. Water. 10: 1-25

Zomlot Z. Verbeiren B. Huysmans M. and Batelaan O. 2015. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. Journal of Hydrology: Regional Studies. 4: 349-368


احمدپور ا. سلیمانی ک. شکری م. و قربانی ج. 1393. مقایسه میزان کارایی سه روش رایج طبقه‌بندی نظارت شده داده‌های ماهواره‌ای در مطالعه پوشش گیاهی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی. 5(3): 77-89.

آیرملو ن. و خاکی ترابی ا. 1384. مقایسه عوامل بیلان متوسط درازمدت دریاچه ارومیه با سال‌های آبی تر و خشک. تحقیقات منابع آب ایران. 1(3): 85-87.

خادمی ف. پیرخراطی ح. و شاه کرمی س. 1393. مطالعه روند افزایش خاک‌های شور اطراف دریاچه ارومیه با استفاده از GIS و RS. فصلنامه علمی- پژوهشی علوم زمین. 24(94): 93-98.

ستاد احیای دریاچه ارومیه. 1396. http://ulrp.sharif.ir/page/urmia-lake-level .

سلیمانی ساردو ف. آذره ع. رفیعی ساردوئی ا. و قره‌چایی ح. 1394. بررسی روند تخریب اراضی در دشت گرمسار با استفاده از تصاویر لندست. نشریه حفاظت و بهره‌‌برداری از منابع طبیعی. 4(2): 157-169.

فتحی م. ح. مددی ع. بهشتی ب. و سرمستی ن. 1394. ارزیابی نوسان‌های سطح آب دریاچه ارومیه و افزایش پهنه‌های نمکی در منطقه شمال غرب ایران. پژوهش‌های جغرافیای طبیعی. 47(2): 271-185.

گنجعلی س. قاسمی ح. و حسینی قمی م. م. 1393. تحلیل زیست محیطی و استراتژیک برنامه مدیریت جامع حوضه آبخیز دریاچه ارومیه. فصلنامه علمی پژوهشی اکوبیولوژی تالاب. 6(22): 41-48.

مهسافر ح. مکنون ر. و ثقفیان ب. 1390. اثرات تغییر اقلیم بر بیلان آبی دریاچه ارومیه. تحقیقات منابع آب ایران. 7(1): 47-58.

هاشمی نسب س. 1396. ارزیابی اثرات تغییراقلیم بر منابع آب در حوضه کارون. پایان‌نامه دکتری. دانشکده علوم جغرافیا و برنامه‌ریزی، دانشگاه اصفهان. 165 ص

احمدپور ا. سلیمانی ک. شکری م. و قربانی ج. 1393. مقایسه میزان کارایی سه روش رایج طبقه‌بندی نظارت شده داده‌های ماهواره‌ای در مطالعه پوشش گیاهی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی. 5(3): 77-89.

آیرملو ن. و خاکی ترابی ا. 1384. مقایسه عوامل بیلان متوسط درازمدت دریاچه ارومیه با سال‌های آبی تر و خشک. تحقیقات منابع آب ایران. 1(3): 85-87.

خادمی ف. پیرخراطی ح. و شاه کرمی س. 1393. مطالعه روند افزایش خاک‌های شور اطراف دریاچه ارومیه با استفاده از GIS و RS. فصلنامه علمی- پژوهشی علوم زمین. 24(94): 93-98.

ستاد احیای دریاچه ارومیه. 1396. http://ulrp.sharif.ir/page/urmia-lake-level .

سلیمانی ساردو ف. آذره ع. رفیعی ساردوئی ا. و قره‌چایی ح. 1394. بررسی روند تخریب اراضی در دشت گرمسار با استفاده از تصاویر لندست. نشریه حفاظت و بهره‌‌برداری از منابع طبیعی. 4(2): 157-169.

فتحی م. ح. مددی ع. بهشتی ب. و سرمستی ن. 1394. ارزیابی نوسان‌های سطح آب دریاچه ارومیه و افزایش پهنه‌های نمکی در منطقه شمال غرب ایران. پژوهش‌های جغرافیای طبیعی. 47(2): 271-185.

گنجعلی س. قاسمی ح. و حسینی قمی م. م. 1393. تحلیل زیست محیطی و استراتژیک برنامه مدیریت جامع حوضه آبخیز دریاچه ارومیه. فصلنامه علمی پژوهشی اکوبیولوژی تالاب. 6(22): 41-48.

مهسافر ح. مکنون ر. و ثقفیان ب. 1390. اثرات تغییر اقلیم بر بیلان آبی دریاچه ارومیه. تحقیقات منابع آب ایران. 7(1): 47-58.

هاشمی نسب س. 1396. ارزیابی اثرات تغییراقلیم بر منابع آب در حوضه کارون. پایان‌نامه دکتری. دانشکده علوم جغرافیا و برنامه‌ریزی، دانشگاه اصفهان. 165 ص





Announcements  

  •  No announces available
Indexes  

 


ISC
magiran
Civilica
SID
nali