Up to journal
for Research & Developement
Journal of Materials Science: Materials in Electronics
Impact Factor
2000 - 2020
Open Access

Iranian Water Researches Journal
Evaluation of river bio-resilience with artificial intelligence models(case study: Aliabad river)

 submission: 07/08/2019 | acception: 05/01/2020 | publication: 14/09/2020


naghmeh jafarzadeh1, s.ahmad mirbagheri firozabadi2*, taher rajaee3, afshin daneh kar4, maryam robati5

1-Science and Research Branch, Islamic Azad University,tehran،naghme.jafarzadeh@gmail.com

2-KN.Toosi,university tehran، mirbagheri@kntu.ac.ir

3-qom university، taher_rajaee@yahoo.com

4-tehran university،afdanehkar@gmail.com

5-Science and Research Branch, Islamic Azad University,tehran،maryamrobati1984@gmail.com



Resilience is a criterion for measuring the strength and stability of a system and its ability to absorb changes and distribute them, while at the same time maintain relationships between system variables. The ability of societies to live and develop with dynamic environments is known as ecological resilience. When the accessibility of a vital resource (such as water) varies between overabundance and extreme scarcity due to natural or man-made phenomena, management should be flexible and the authorities adapted with maintaining legitimacy. So, the prediction of ecological resilience in water resources such as rivers is an important issue that needs to be considered for better management of land-use systems and water supplies. For this purpose physical and chemical parameters in rivers should be monitored to predict and understand the behavior, flexibility and interaction between living-beings of rivers. The ecological importance and reorganization features of algae, as well as being directly influenced by chemical and physical parameters make them eligible to be considered as indicators of nutrient pollution and to be the endpoints for numeric nutrient criteria developed for water quality management aims. But, most environmental models do not address water quality in relation to river biology over time and offer little prediction for future periods. Time series modeling and forecasting have importance in various applied studies, such as resilience in which resistance to chronic stress and time series are to be significant. In spite of various studies on intelligent modeling in the field of water management, no study has yet investigated the environmental resilience of the river in Iran, using the time series and artificial intelligence models. The resilience indicators examined for rivers have included four criteria: the biology, impact of pollutants, climate change, and time. The mentioned criteria were investigated in accordance with the following factors: Diatom algae, chemical parameters, discharge variations, and 10-year time series. The input data for modeling relations in the river ecosystem for Diatom were based on the factors influencing the physical and chemical parameters of these algae (EPA2017), and also on the basis of statistical methods of their correlation coefficients. Resilience index in the current study was determined based on Diatoms population with regard to Diatomic-Trophic index. In this respect, this study proposes a gene expression programming (GEP), hybrid wavelet-gene expression programming (WGEP), support vector machine (SVM) and wavelet support vector machine (WSVM) for prediction of monthly variations in Lavarak Station’s water quality that affect bio indicators. The 10-years (2002-2012) monthly data used in this study were measured from Aliabad River located in Tehran, Iran. First, the measured discharge (Q) and other quality parameters that affect the bio indicators data sets were initially decomposed into several sub-series, using discrete wavelet transform (DWT). Then, this new sub-series was imposed on the (GEP) and (SVM) models as input patterns to predict monthly bio indicator one month ahead. The results of the new proposed WGEP and WSVM models were compared with SVM and GEP models. The performance of this model was evaluated using Nash-Sutcliffe efficiency (NS), root mean square error (RMSE), and mean absolute error (MAE). A comparison between the four models showed the superiority of the hybrid models over the classic models. The achieved results even pointed to the superiority of a single SVM model over the GEP model. With regard to the studies conducted to determine the bio - resiliency index, the abundance of Diatom algae in the river within the standard of resilience the WSVM hybrid model was better while the WGEP was the second best. But due to the modeling process and the results, the WGEP model was used to determine the formula and the effect of each parameter was defined in the scenario. This model can also be effective in expressing changes in one or more independent parameter. The results of this study indicated that considering the capacity and the ability of AI models to deal with the nonlinear nature and dynamics of hydrological processes, the ability of wavelet analysis to extract certain periods of a time series is potentially more to gain reasonable prediction in different environmental processes and planning for them.


Keywords: Gene Expression  Resiliency  Support Vector Machine  Wavelet  Bio indicator. 

Download fulltext PDF

Open Access


جعفرزاده ن. میرباقری س. ا. رجایی ط. دانه‌کار ا. و رباطی م. 1399. سنجش تاب‌آوری زیستی رودخانه با مدل‌های هوش مصنوعی (مطالعة موردی: رودخانة علی‌آباد). مجله پژوهش آب ایران. 38: 61-70


Alizadeh M. J. Rajaee T. and Motahari M. 2017. No Access Flow forecasting models using hydrologic and hydrometric data. Proceedings of the Institution of Civil Engineers- Water Management. 170(3): 150-162

Ahii Chia M. Paul B. S. alon S. O. and adaMu A. 2011. Green algal interactions with physicochemical parameters of some manmade ponds in Zaria northern Nigeria. Brazilian Journal of Botany. 34(3): 285-295

Beckera M. E. Beckerb T. J. and Belluccia C. J. 2018. Diatom tolerance metrics to identify total phosphorus as candidate cause of aquatic life impairment in Connecticut USA freshwater streams. Ecological Indicators 93: 638-646

Bere T. Mangadze T. and Mwedzi T. 2014. The application and testing of diatom-based indices of stream water quality in Chinhoyi Town Zimbabwe. Water SA. 4(3): 503-512

EPA. 2017. Smart Growth Fixes for Climate Adaption and Resilience. 94 p

EIA/OECD. Chirista Claap G. B. A. K. K. O. November 2015. Low-Emission Development Strategies LEDS: Technical Institiunal and Policy Lessons Head of Publications Service. 70 p

Eslamian S. University F. and Gohari A. 2009. Estimation of Daily Reference Evapotranspiration Using Support Vector Machines and Artificial Neural Networks in Greenhouse. Research Journal of Environmental Sciences. 3(4):439-447

González Costa J. J. Reigosa M. J. Matías J. M. and Covelo E. F. 2017. Soil Cd Cr Cu Ni Pb and Zn sorption and retention models using svm: Variable selection and competitive model. Science of the Total Environment. 593-594(Supplement C): 508-522

Gong Y. Zhang Y. Lan S. and Wang H. Y. 2016. A Comparative Study of Artificial Neural Networks Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee Florida. Water Resour Management. 301: 375-391

Guang M. Z. Hong W. L. Xiang C. J. and XU M. 2005. Assessment of the water quality and nutrition of the Dongting Lake with wavelet neural network. Journal of Hunan University. 32: 91-94

Laila R. Rosa T. and Carles I. 2012. The use of diatom assemblages as ecological indicators in highly stratified estuaries and evaluation of existing diatom indices. Article in Marine Pollution Bulletin. 643: 500-511

Mahjouri N. and Kerachian R. 2010. Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience Assessment. 175(1-4): 291-302

 Palmer M. A. Berdata E. S. Allan J. D. Lake P. S. Alexander G. Brooks’ S. Carr J. Clayton S. N. Dahm C. Follstadshah J. Galata D. L. Loss S. G. Goodwin P. Hart D. D. Hasset B. Jenkingson R. G. M. Kondolef Lave R. Meyer J. L. O’donnell T. K. Pagano L. and Sudduh E. 2005. Standards for ecologically successful river restoration. Ecology. 427: 208-21

Paul M. J. Walsh B. Oliver J. and Thomas D. 2017. Algal indicators in streams: areviewof their application in water quality management of nutrient pollution U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, D.C.P: 44

Rajaee T. and Boromand A. 2015. Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Ocean Research. 53: 208-217

Rajaee T. and Shahabi A. 2016. Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters Arabian Journal of Geosciences. 9: 176

Rajaee T. and Khani S. 2016. Comment on “Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environmental Science and Pollution Research, 23(1): 938-940

Ravansalar M. and Rajaee T. 2015. Evaluation of Wavelet Performance via an ANN-Based Electrical Conductivity Prediction model. Environmental Monitoring and Assessment 1876

Sattar A. M. A. Gharabaghi B. Sabouri F. and Thompson A. M. 2017. Urban stormwater thermal Gene expression models for protection of sensitive receiving streams. Hydrological Processes. 31(13): 2330-2348

Sienkiewicz E. and Gąsiorowski M. 2017. The diatom- inferred pH reconstructions for a naturally neutralized pit lake in south-west Poland using the Mining and the Combined pH training sets. 15(605-606): 75-87

Stevenson J. 2014. Ecological assessment with algea: a reviw and syntehesis1. Journal Phycol. 50: 437-461

WFD. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy Official Journal of the European Communities L 327/1 of 22.12.2000

WFD. 2008. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, the Council Official Journal of the European Communities L 348/84 of 24.12.2008

Walsh G. and Wepener V. 2009. The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA. 35(5): 579-594

احمدی ف. رادمنش ف. و آبادی ر. 1393. مقایسه روش‌های برنامه‌ریزی ژنتیک و ماشین بردار پشتیبان در پیش‌بینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوز چای). نشریه آب ‌و خاک علوم و صنایع کشاورزی. 28(6): 1162-1171.

دهقانی ر. یونسی ح. و ترابی پوده ح. 1396. مقایسه عملکرد مدل‌های ماشین بردار پشتیبان. برنامه‌ریزی بیان ژن و شبکه بیزین در پیش‌بینی جریان رودخانه‌ها مطالعه موردی: رودخانه کشکان. نشریه پژوهش‌های حفاظت آب‌ و خاک. 24(4): 125-128.

رضایی م. ر. سرایی م. ح. و دانش‌نیا ا. ب. 1395. تبیین مفهوم تاب‌آوری و شاخص‌ها و چهارچوب‌های آن در سوانح طبیعی. فصلنامه پیشگیری و مدیریت بحران. 6(1):96 -112.

سلگی ا. زارعی حی. و گلابی م. ر. 1396. بررسی عملکرد مدل برنامه‌ریزی بیان ژن با روش‌های پیش‌پردازش داده‌ها جهت مدل‌سازی جریان رودخانه. نشریه پژوهش‌های حفاظت آب و خاک. 24(2): 185-201.

سیدیان س. م. سلیمانی م. و کاشانی. م 1393. پیش‌بینی دبی جریان رودخانه با استفاده از اکوهیدرولوژی 1(3): 167-179.

فعال ز. 1391.  بررسی کیفی آب رودخانه بهمن‌شیر با استفاده از جلبک‌ها به‌عنوان شاخص‌های زیستی فصلنامه علمی محیط‌زیست. سازمان حفاظت محیط‌زیست. 52: 22-32

قبادیان ر. قربانی م. ع. و خلج م. 1394. بررسی عملکرد روش برنامه‌ریزی بیان ژن درروند یابی سیلاب رودخانه زنگمار در مقایسه با روش موج دینامیکی. مجله آب ‌و خاک. 27(3): 592-602.

قربانی. م. ع. و دهقانی. ر. 1395. کاربرد شبکه‌های عصبی بیزین ماشین بردار پشتیبان و برنامه‌ریزی بیان ژنی در تحلیل بارش- رواناب ماهانه مطالعه موردی: رودخانه کاکارضا. علوم و مهندسی آبیاری شهید چمران اهواز. 39 (2): 125-138.

نیک‌پور م. ر. ثانی‌خانی ه. سجاد م. ب. و عارف. م. 1396. کاربرد مدل‌های بیان ژن ماشین بردار پشتیبان Ls-WNN-ANN شبیه‌سازی بارش رواناب رودخانه خیاوچای. اکو هیدرولوژی. 42: 627-639.


  •  No announces available