Up to journal
for Research & Developement
Journal of Materials Science: Materials in Electronics
Impact Factor
2000 - 2020
Open Access

Iranian Water Researches Journal
Optimal Planning for available water allocation based on groundwater sustainability index in Arazkoose watershed using dynamic system approach

 submission: 08/06/2019 | acception: 03/12/2019 | publication: 01/10/2020


zeinab mahmoodi1*, Abdolreza bahremand2, khodayar Abdollahi3, rasoul mirabbasi4, Amir saddodin5, shapour kouhestani6, choghi bayram komaki7

1-gorgan university،zeinab.mahmoodi68@gmail.com

2-gorgan university،abdolreza.bahremand@yahoo.com

3-shahrekord university ،abdollahikh@gmail.com

4-shahrekord university،mirabbasi_r@yahoo.com

5-gorgan university،amir.saddoddin@gmail.com

6-jiroft university،shapourkouhestani@yahoo.com

7-gorgan university،b.komaki@gmail.com



Increasing water demand has become inevitable due to population growth, industrial development and agriculture. On the contrary, water resources limitation and observing sustainability have restricted water allocation. Therefore, supply of water for all demands is impossible. Overuse of groundwater and surface resources, rainfall reduction, drought in most parts of the world, as well as pollution of ground and surface water have severely lessened available water resources. So, using these vital resources, with sustainable manner, requires proper management. Demand management and water production are two effective approaches. But, water production projects are time-consuming and high-cost. So, water management models are appropriate tools for decision making to predict the future situation, with low time and cost. Mathematical techniques are useful tools for keeping the balance between environmental requirements and human demands, specifically for optimal utilization of water resources in complex applications such as watershed or aquifer management. Aiming to more comprehensive decision making, a combination of two powerful operational and research techniques, including simulation and optimization could lead to a possible sustainable and optimal economic management. This study was aimed to the simulate water policy in the Arazkuse watershed, Golestan province, Iran. In this regard, both system dynamics model and water balance relationships were applied. VENSIM as a system dynamics software was used to capture causal and consultative relationship among controlling factors, while water balance was applied to estimate availability of surface and subsurface water. As four sectors of water consumption (urban, industrial, environmental and agricultural) were considered in the current study, the data about landuse, cultivated crops in the watershed, hydrological information and drinking water consumption were gathered. Then, the water consumption was optimized in the agricultural sector, using linear programming technique with the two objectives of maximizing economic benefits and minimizing water consumption, by Lingo software. Finally, the effect of water optimization in the agricultural sector on the groundwater sustainability index of Arazkuse basin was investigated. The groundwater sustainability index represents the portion withdrawn water from the whole of aquifer reservoir.The infiltrated water volume and deep storage coefficient variables were used to evaluate available groundwater from the total groundwater and the total discharge of the basin during the simulation period. Accounting for as much as 75% of the water consumption in the basin is supplied from groundwater while for surface water this portion was 25%. In general, the total volume of annual available groundwater in the Arazkuse basin was about 75 million cubic meters whereas the total volume of available surface water equaled 155 million cubic meters. These values indicated that a large volume of surface water flows out of reach, which puts extra pressure on groundwater to meet the needs and may endanger the stability of the aquifer. Due to the amount of water supply and requirements by various sectors (including the drinking water, environment, agriculture and industry) the available water to each sector was calculated. A linear programming technique was used to optimize the allocation of water resources with an objective function of maximizing economic profit while minimizing water consumption in the agricultural sector. Flood irrigation is a common strategy for rice cultivation. Hence, irrigation efficiency in the studied watershed is lower than other watersheds which applied the irrigation methods such as drip and sprinkler systems. Considering the fact that about 32% of agricultural lands in Arazkuse watershed are dedicated for rice cultivation, to some extent could be concluded that it would be possible to increase irrigation efficiency, by improving conveyance and distribution coefficients. The results showed that although the available surface water was approximately double, provided water by groundwater supplied about 75% of the required water, especially for the case of agricultural needs. Despite the fact that runoff may be the source for a part of recharged water, a considerable amount of the available water exits in the form of runoff. Therefore, the supplied water for various sectors was linked to the excessive use of groundwater resources. Hence, the agricultural sector was the main water consumption that needed to be optimized. The assessment of the effect of optimization of agricultural water use on groundwater sustainability index showed under optimal condition of water required for agriculture the index shifted from 14.4 in the present condition to 1.9 for the new scenario.


dynamic system approach  linear programming  groundwater sustainability index  Arazkoose watershed 

Download fulltext PDF

Open Access


محمودی ز. بهره‌مند ع. عبدالهی خ. میرعباسی ر. سعدالدین ا. کوهستانی ش. و بایرام کمکی چ. 1399. بهینه‌سازی تخصیص آب در دسترس بر مبنای شاخص پایداری آب زیرزمینی در حوضه ارازکوسه با استفاده از رویکرد پویایی سیستم. مجله پژوهش آب ایران. 38: 45-59


Almaraz S. DL. Marianne B. Catherine A P. Ludovic M. and Serge D. 2015. Design of a multi-contaminant water allocation network using multi-objective optimization. Computer Aided Chemical Engineering. 37: 911-916

Chen C. H. Liu W. L. and Liaw S. L. 2005. Development of a Dynamic Strategy planning Theory and System for sustainable River Basin Land use Management. Science of total Enviroment. 346(1): 17- 37

Chen H. Change Y. and Chen K. 2014. Integrated wetland management: An analysis with group model building based on system dynamics model. Journal of Environmental Management 146: 309-319

Chung G. Lansey K. Blowers P. Brooks P. Ela W. Stewart S and Wilson P. 2007. A general water supply planning model: Evaluation of decentralized treatment. Environmental Modelling & Software. 23)7): 893-905

Das B. Singh A. Panda S N and Yasuda H. 2015. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy. 42: 527-537

Divakar L. Babel M. S. Perret S. and Das G. A. 2013. Optimal water allocation model based on satisfaction and economic benefits. International Journal of Water. 7(4): 363-381

Forrester J. W. 1961. Industrial dynamics. Massachusetts Institute of Technology Press. 464 p

Hassan-Esfahani L. Torres-Rua A and McKee M. 2015. Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data. Agricultural Water Management. 153: 42-50

Li F J. Dong S U. and Li F. 2012. A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecological Modelling. 227: 34-45

Li M. and Guo P. 2014. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling. 38(19-20): 4897-4911

Madani K. and Marino M. A. 2009. System Dynamics Analysis for Managing Iran's Ayandeh– Rud River Basin. Water Resources Management. 23(11): 2163-2187

Mahdi-Moradi J. BozorgHaddad O. Karney M. A. and Marino B. W. 2007. Reservoir operation in assigning optimal multi-crop irrigation areas. Agricultural Water Management. 90: 149-19

Mashaly A F. and Fernald A G. 2020. Identifying Capabilities and Potentials of System Dynamics in Hydrology and Water Resources as a Promising Modeling Approach for Water Management. Water 2020, 12, 1432; doi:10.3390/w12051432

Roozbahani R. Schreider S and Abbasi B. 2015. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environmental Modelling & Software. 64: 18-30

Sadeghi S. H. R. Jalili Kh. and Nikkami D. 2009. Land use optimization in watershed scale. Land Use Policy. 26: 186-193

Simonovic S. P. 2003. Canada Water, A Tool for Modelling Canadian Water Resources. Presentation at the Canadian Commission for UNESCO (CCU), Annual General Meeting, 1-2 Ottawa, 1-2 March

Simonovic S. P. and Ahmad S. 2000. System Dynamics Modelling of Reservoir Operation for Flood Management. Journal of Computing in Civil Engineering. 14(3): 190- 198

Sterman J. D. 2000. Business Dynamics, Business Dynamics: Systems Thinking and Modeling for a Complex World with CD-ROM. McGraw-Hill, Boston

Tenant D. L. 1976. Instream flow regimens for fish. Wildlife, recreation and related environmental resources, Fisheries. 1(4). 6-10

Turc L. 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy. 12: 13-49

Vedula S. Mujumdar P. P. and Sekhar G. C. 2004. Conjunctive use modeling for multicrop irrigation. Journal of Agricultural Water Management. 73: 193-221

Vrba J. and A. Lipponen. 2007. Groundwater resource sustainability indicators. Groundwater Indicators Working Group

Winz I. 2005. A System Dynamic Approach to Sustainable Urban Development. the 23rd International Conference of the System Dynamics, Boston, USA, January

Zarghami M. and Akbarieh S. 2012. System dynamics modelling for Complex Urban Water System: Application to City of Tabriz, Iran. 2012. Resource, Conservation and recycling. 60: 99-106

اعلمی م. ت. فرزین س. احمدی م ح. و آقابالایی ب. 1393. مدل­سازی پویای سیستم سد و آب­های زیرزمینی به ­منظور مدیریت بهینه آب (مظالعه موردی، سد گلک). نشریه مهندسی عمران و محیط‌زیست. 44(1): 1-12.

شیخ خوزانی ز. حسینی خ و رحیمیـان م . 1389. مـدل‌سـازی بهـره­برداری از مخازن چندمنظوره به روش پویایی سیستم. مجله مدل­سازی در مهندسی. 218: 57-66.

صادقی ح. ذوالفقاری م و آرام ر. 1390. مدلسازی و پیش‌بینی کوتاه‌مدت تقاضای آب شهری. مجله سیاست‌های اقتصادی. 87(7): 159-172.

صلوی­تبار ع. ضرغامی م. و ابریشم ­چی ا. 1385. مدل پویایی سیستم در مدیریت آب شهری تهران. فصل­نامه علمی پژوهشی آب و فاضلاب. 59: 12-28.

کاظمی کرانی ا. ثمره هاشمی م. گلستانی س. و ثمره قاسم شعبجره م. 1398. ارزیابی و انتخاب بهینه معیارهای الگوی کشت مبتنی بر توسعه پایدار. نشریه تحقیقات منابع آب ایران، 15(2): 80-90.

کدخداحسینی م. شامحمدی ش. میرعباسی نجف ­آبادی ر. و نوذری ح. 1396. ارزیابی سناریوهای مختلف تخصیص منابع آب سد چغاخور با استفاده از روش پویایی سیستم. نشریه علمی- پژوهشی علوم و مهندسی آبخیزداری ایران. 11(6): 23-33.

گلیان س. ابریشم‌چی ا. و تجریشی م. 1384. تحلیل سیاست­های بهره­ برداری از منابع آب در حوزه آبخیز با روش پویایی سیستم. فصل­نامه علمی- پژوهشی آب و فاضلاب. 80: 63-70.

محمـودی ب. و سـرلک م. 1387. بـرآورد عوامـل مؤثر بـر عرضـه و تقاضای آب و جایگاه ایران در منطقه از نظر توسعه پایـدار. مرکـز تحقیقات استراتژیک، معاونت پژوهش‌های اقتصادی، بهمـن مـاه 1387، کد گزارش: 50-87-2-04.

مرعشی س ج. بلیغ و. غیاث‌آبادی ع. 1388. تفکر سیستمی و ارزیابی کارآمدی آن در اداره جامعه و سازمان، انتشارات سازمان مـدیریت صنعتی، چاپ دوم، تهران. 166 ص.

وزارت نیرو. شرکت مدیریت منابع آب ایران، شرکت سهامی آب منطقه ­ای استان گلستان، دفتر مطالعات پایه منابع آب. 1388. بیلان آب در محدوده مطالعاتی گرگان. گزارش بهنگام ­سازی تلفیق مطالعات منابع آب حوزه آبخیز رودخانه­های قره­ سو و گرگان. 93 ص.


  •  No announces available